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ABSTRACT

In a brain network, weak and nonsignificant edge weights be-
tween nodes signal spurious connections and are often thresh-
olded out of the network. The traditional practice of thresh-
olding edge weights at an arbitrary value can be problem-
atic. Network filtration provides an alternative by summa-
rizing the changes in the network topology with respect to
a broad range of thresholds. A well established network fil-
tration approach depends on the graphical-LASSO (least ab-
solute shrinkage and selection operator) model, where a se-
quence of binary networks are obtained based on non-zero
sparse inverse covariance (IC) estimates of partial correla-
tions at a range of sparsity parameters. The limitation of the
graphical-LASSO network model is that it relies on the struc-
tural information rather than actual entries of the sparse IC
matrices and therefore can only yield approximate dynamic
topological changes in the network. In the current study, we
propose a new network filtration approach based on least an-
gle regression (LARS) that yields exact filtration values at
which network topology changes, and apply it to study brain
connectivity in response to emotional stimuli across different
age groups via electroencephalographic (EEG) data.

Index Terms— LARS, EEG, network filtration, emotion,
brain connectivity

1. INTRODUCTION

Correlation-based network analysis has been widely used
to measure the strength of brain connectivity [1, 2]. In a
dense network, correlation matrices are often thresholded to
reveal strong and significant connections between nodes and
regions, followed by graph theoretic measures to quantify the
brain connectivity differences [3]. Nevertheless, thresholding
the correlation matrix at a single value provides only a snap-
shot of the network connectivity, thus losing a dynamic sense
of connectivity changes in the network. Most importantly,
the optimal choice of a single threshold can vary arbitrarily
across studies and affect consistency of interpretation [4].

Network filtration provides an alternate approach of
thresholding edge weights at a broad range of values and
summarizing changes in the network topology as the thresh-
old varies. An early development in this direction was the

sparse inverse covariance estimation (SICE) model proposed
in [5]. The model utilizes the popular graphical-LASSO
method to calculate LASSO-penalized maximum likelihood
estimates (MLE) of the inverse covariance (IC) matrix over
a range of sparsity parameters λ. However, the graphical-
LASSO method is not reliable in estimating the magnitude
of the non-zeros entries of the IC matrix due to its shrink-
age property. So only the structural information of zero and
non-zero entries is utilized in defining a binary network. At a
given λ, two nodes i and j are directly connected by an edge
if the (i, j)-entry in the λ-penalized IC matrix is non-zero.
As λ increases, nonzero entries thin out and a sequence of
binary networks corresponding to subgraphs of the complete
network is created via the disappearance of edges. Since
the magnitude estimation is not reliable, the model can only
yield approximate λ values where the topology of node clus-
ters changes. Also, topological information embedded in the
filtration of subgraphs was not fully exploited in [5]. Only
edge numbers within and between brain regions were used
to quantify changes in connectedness of node clusters and to
subsequently compare brain networks in Alzheimer’s patients
and normal controls.

In this paper, we propose a new network filtration method
named persistent LARS (pLARS) that accommodates a direct
and exact thresholding scheme through the LARS algorithm
[6]. We also utilize it to investigate whether age affects EEG
network connectivity in response to viewing pictures of pos-
itive, negative or neutral emotional content [7]. Our key
contributions are: (a) establishing a persistent data structure
in the LARS algorithm, and exploiting this structure to con-
struct a network filtration; (b) applying the pLARS model to
a 128-channel EEG dataset to determine possible aging effect
on EEG brain connectivity with respect to different types
of emotional stimuli. To the best of our knowledge, this is
the first study exploring a LARS filtration for a task-related
high-density EEG network.

2. METHOD

The LARS algorithm successively builds up a linear estimate
for a response vector over normalized vector covariates [6].
Suppose data vectors xi = (xi1, . . . , xin)

′, i = 1, . . . , p,
are centered and normalized EEG signals recorded at the p
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nodes for n time points, i.e. x′ixi = 1 and
∑n
i′=1 xii′ =

0 for all i = 1, . . . , p. We assume that the EEG measurement
at any node i is linearly correlated with measurements at all
the other nodes:

xi =
∑
j 6=i

βijxj + εi, (1)

with var(εi) = 1/πii and cov(εi, εj) = πij/(πiiπjj).
In this setting, with an abuse of notation, the LARS al-

gorithm builds up an estimate x̂i for each response xi on the
left-hand side in (1) in exactly p − 1 steps. Geometrically,
the algorithm follows a piecewise linear path with p− 1 turn-
ing points. It begins at the origin and sets off in the direc-
tion of a node most correlated with xi. When a second node
has as much correlation with the difference between xi and
its current estimate as node one, the path turns to a direc-
tion equiangular between the two nodes and continues until
a third node has as much correlation with the difference be-
tween xi and its current estimate as the first two. The path
turns and continues in such a manner until a final estimate for
xi is attained. The algorithm can be implemented as follows.

(1) Let x̂0
i = 0.

(2) Let k = 1.
(3) Compute the current residual ri = xi − x̂k−1i .
(4) Compute the correlation ckij between the current residual
ri (j 6= i) and the nodes xj : ckij = x′jri, j 6= i, which are the
current correlations at step k.
(5) Define the maximal absolute current correlation (MACC)
as the maximum along all current correlations at node i with
all other nodes:

Cki = max{|ckij | : j 6= i}. (2)

(6) Compute the equiangular vector uk = XkAk(X
′
kXk)

−11k,
where

Xk = (sign(ckij1)x1, . . . , sign(c
k
ip)xp)

and
Ak = (1k(X

′
kXk)

−11k)
−1/2.

(7) Compute the projection vector ak = (ak1 , · · · , akp), where
akj = x′juk, j 6= i.
(8) The estimate for xi is updated to

x̂ki = x̂k−1i + γ̂kuk,

where γ̂k = min+j′

{
Ck

i −c
k
ij

Ak−akj
,
Ck

i +c
k
ij

Ak+akj

}
with min+ tak-

ing minimum over positive components within {·} for all
j′ 6= j1, . . . , jk. The algorithm then proceeds to the next step
with the updated x̂ki .
(9) If k ≤ p− 1, let k + 1→ k and go to step (2); otherwise
terminate.

Defining a LARS network. We first define a directed net-
work: the weight for the edge in the direction xi′ → xi, i

′ 6=
i, is defined to be the MACC C`i at the step ` when the co-
variate node xi′ enters the LARS path for the response node
xi; it is treated as the contribution of node i′ to node i rela-
tive to all the covariate nodes. Similarly, the weight for the
edge in the direction xi → x′i is defined as the MACC C`

′

i′ at
the step `′ when the covariate node xi enters the LARS path
for the response node xi′ . Diagonal edge weights are set to
1. We then symmetrize the directed network by defining the
edge weight wii′ of a node pair (i, i′) as the minimum of the
bilateral edges, i.e.

wii′ = min{C`i , C`
′

i′ }, (3)

where we take the min(·) norm to ensure that we only
consider direct inter-nodal weight as strong when bilateral
weights are strong. We shall refer to this weighted network as
the LARS network. A binary network then follows by defining
the adjacency matrix B(λ) = (bij(λ)):

bij(λ) =

{
1 if wij > λ
0 otherwise . (4)

on which the connectedness of the LARS network G(λ) =
(V,E(λ)) is defined: two nodes i and j are directly connected
by an edge if the (i, j)-entry in the adjacency matrix B is 1,
or equivalently when wij > λ. The vertex set V consists of p
nodes and the edge set E(λ) consists of all the edges, or arcs,
present in B(λ).
LARS network filtration. A data structure is said to be per-
sistent if its state is preserved when it is modified according
to a certain criterion. A persistent data structure can manifest
itself in various forms that facilitate data exploration. In a
graph theoretic setting, the graph G(λ) for some parameter λ
is defined to be persistent if it has the nested subset structure
G(λ1) ⊃ G(λ2) ⊃ · · · for λ1 ≤ λ2 ≤ λ3 · · · [2]. Here we
establish a persistent structure in the LARS network via its
graphs G(λ). Without proof, we present Theorem 1, which
states that the sequence, or filtration, of the subgraphs of the
LARS network is persistent. Also, the established persistent
graph filtration, which we shall refer to as the persistent LARS
filtration, is maximal in the sense that no additional levels of
subgraphs can be added to the filtration [2].

Theorem 1. For data xi = (xi1, . . . , xin)
′, i = 1, . . . , p,

that are centered and normalized, let w(1), w(2), . . . , w(q) be
the order statistics of the unique edge weights wij with q =
p(p+1)/2 being the number of distinct entries. Then we have
the maximal filtration of subgraphs G(w(1)) ⊃ G(w(2)) ⊃
· · · ⊃ G(w(q)).

Persistence as a quasi-measure of connection strength.
The nested structure in Theorem 1 constitutes the persistent
edge property of the LARS network filtration: an edge that
disappears at λ1 does not appear again for any λ2 > λ1,
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Fig. 1. Barcode representation of pLARS on five simulated
random and correlated networks, where the latter have under-
lying connection between nodes 1, 2 and 3 (middle). The edge
weight matrix corresponds to one of the correlated networks.

which is a stronger property than the monotone property of
the SICE model [5]. As a result, the persistence represented
by λ qualifies as a quasi-measure of connection strength be-
tween nodes. It indirectly measures how long node pairs,
hence path-connected components, stays connected as the
filtration value λ increases.
Barcode representation of persistence. We then quantify
changes in the connectedness by a barcode summarizing the
zeroth Betti number β0(λ), which counts the number of path-
connected components, across a range of λ [8]. By assum-
ing the edge weights of the LARS network are unique, we
can compute the barcode of its filtration via Kruskal’s algo-
rithm for finding a minimum spanning tree (MST) [9]. When-
ever a new edge is added in ascending order of (1 − wij)i,j ,
the algorithm checks whether it connects two different path-
connected components. Two path-connected components are
merged when they are connected for the first time. Once
we obtain the complete sequence of λ values where compo-
nents merge, we can subtract them from 1 to obtain the x-
coordinates for the β0 barcode.
Comparing connectivity between groups. To compare the
barcodes β1

0(λ) and β2
0(λ) of two LARS network filtrations,

we conduct the test

H0: β1
0(λ) = β2

0(λ), for all λ ∈ [0, 1];

H1: β1
0(λ) 6= β2

0(λ), for some λ,∈ [0, 1].

where the range [0, 1] of the filtration value λ is determined in
Theorem 2, which shows the LARS MACCs, hence the edge
weights, are bounded between 0 and 1.

Theorem 2. Given that xi = (xi1, . . . , xin)
′, i = 1, . . . , p

are centered and normalized, the LARS MACCsCki as defined
by (2) satisfy the inequality 0 ≤ Cki ≤ 1, for any i and k =
1, . . . , p− 1.

A permutation test is then performed on two groups of
barcodes to find the significance of the observed null maxi-
mum absolute t-statistic maxλ∈[0,1] |T (λ)|. This will account
for multiple comparison over every possible filtration value λ.
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Fig. 2. Top: experimental schematic for the 128-channel EEG
data. Main: a sample set of EEG signals from the 128 chan-
nels across the whole time span. Data analysis is based on
averaging over 30 sets of signals in each picture category.

3. SIMULATIONS

We evaluate the ability of pLARS to detect actual nodal con-
nectivity in the underlying network in comparison with the
graphical-LASSO model [5]. We simulate two sets of ten
6-node networks. In set 1, each network is simulated as a
random network with independent series of Gaussian noise
N(0, 0.1) of size 100 simulated at each node. In set 2, an
independent series Gaussian noise N(0, 0.1) of size 100 is
simulated at nodes 2 through 6, and connections are imposed
between nodes 1, 2 and 3, i.e. x3 = 0.5x2 + 0.5x1 + ε, ε ∼
N(0, 0.1× I100). In Figure 1, the significance of connections
is reflected by the magnitude of the edge weights between the
three nodes. In 300 simulations, pLARS identifies 99.7% and
99% of true signals at 5% and 1% significance levels respec-
tively, whereas the graphical-LASSO only identifies 60% and
59.5% at 5% and 1% significance levels respectively. Our
results show that pLARS outperforms the graphical-LASSO
by a large margin in detecting underlying connections for this
group of networks.

4. APPLICATION TO EEG ANALYSIS

Literature suggests age effect on emotional response [7]. We
apply the pLARS method to study age effect on EEG connec-
tivity in response to different emotional stimuli.
Data collection and processing. The dataset was acquired
as part of the Midlife in US (MIDUS II) project. EEG signals
were recorded at a 250Hz rate, referenced at the center node
Cz, and band-pass filtered within [0.5Hz,50Hz] for 106 sub-
jects aged between 36 and 84 years old (57 ± 11 years). A
total of 90 digital color pictures (30 positive/neutral/negative)
selected from the International Affective Picture System
(IAPS) were presented to each of the subjects in a random-
ized sequence [7]. The first second was designated as a
fixation period before the onset of a picture. The picture was
turned off 4s after onset (Figure 2). We removed bad chan-
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Fig. 3. Barcodes of pLARS networks and their pointwise t-
values for three emotional response periods of three picture-
viewing tasks; the x-axis represents the filtration value λ, and
the left and right y-axis represent the β0 Betti numbers and t-
values of pointwise two-sample t-tests respectively. The max-
imum absolute p-values are marked in each category.

nels, corrected myogenic artifacts by performing independent
component analysis (ICA) on the filtered EEG signals [10],
and spherically interpolated missing channels over the skull.
We then averaged over signals recorded on each subject in
periods viewing 30 pictures in the same category. Signals in
the fixation period were treated as baselines and subtracted
from signals in subsequent periods second by second.
LARS network filtration. Subjects were divided into two
age groups: young (below 60 years) and old (above 60 years),
and three emotional periods: emotional reactivity - 4s period
after picture onset; early recovery - 2s period after picture off-
set; late recovery - 2s period after early recovery (Figure 2).
The pLARS procedure is performed independently on data
from individual subjects for the three emotional periods in the
three valence categories. Figure 3 shows barcodes and respec-
tive t-values from pointwise two-sample t-tests. The barcodes
do not show clear group separation, and there is no highly
significant maximum absolute t-value. The permutation test
did not yield significant age effect on any cross category of
valence and emotional response period for a 5% significance
level with Bonferroni correction for 9 tests.

5. DISCUSSION

We conclude that there is no evidence of age effects on EEG
study we performed, possibly due to small sample size. Ad-
ditional study with increased sample size is warranted. Also,
we currently require solving LARS in full to threshold by
the MACCs. Further exploitation of the LARS structure may
yield an alternate filtration value that bypasses a full solution.

Acknowledgements. The research was funded by NIH grants

PO1-AG020166, R01-MH043454, UL1-TR000427, P30-
HD03352 and the Vilas Associate Award from University
of Wisconsin-Madison. We thank Hyekyung Lee at Seoul
National University Hospital and Matthew Arnold at the Uni-
versity of Bristol for their helpful discussion on persistent
homology.

6. REFERENCES

[1] G. Marrelec, A. Krainik, H. Duffau, M. Peregrini-Issac,
S. Lehericy, J. Doyon, and H. Benali, “Partial corre-
lation for functional brain interactivity investigation in
functional MRI,” NeuroImage, vol. 32, pp. 228–237,
2006.

[2] M.K. Chung, J.L. Hanson, J. Ye, R.J. Davidson, and
S.D. Pollak, “Persistent homology in sparse regres-
sion and its application to brain morphometry,” arXiv
1409.0177, 2014.

[3] H. Lee, D.S. Lee, H. Kang, B.-N. Kim, and M.K.
Chung, “Sparse brain network recovery under com-
pressed sensing,” IEEE Transactions on Medical Imag-
ing, vol. 30, no. 5, pp. 1154–1165, 2011.

[4] D Meunier, S Achard, A Morcom, and E Bullmore,
“Age-related changes in modular organization of human
brain functional networks,” Neuroimage, vol. 44, no. 3,
pp. 715–23, 2009.

[5] S. Huang, J. Li, L. Sun, J. Ye, A. Fleisher, T. Wu,
K. Chen, and E. Reiman, “Learning brain connectiv-
ity of Alzheimer’s disease by sparse inverse covariance
estimation,” NeuroImage, vol. 50, no. 3, pp. 935–949,
2010.

[6] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani,
“Least angle regression,” Annals of Statistics, vol. 32,
no. 2, pp. 407–499, 2004.

[7] C.M. van Reekum, S.M. Schaefer, R.C. Lapate, C.J.
Norris, L.L. Greischar, and R.J. Davidson, “Aging is
associated with positive responding to neutral informa-
tion but reduced recovery from negative information,”
Social Cognitive and Affective Neuroscience, vol. 6, no.
2, pp. 177–85, 2011.

[8] H. Edelsbrunner and J. Harer, Computational Topology,
American Mathematical Society, 2010.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein, Introduction to Algorithms, MIT Press, 2009.

[10] A.J. Shackman, B.W. McMenamin, H.A. Slagter, J.S.
Maxwell, L.L. Greischar, and R.J. Davidson, “Elec-
tromyogenic artifacts and electroencephalographic in-
ferences,” Brain Topography, vol. 22, no. 1, pp. 7–12,
2009.

33



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move up by 18.00 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20150304153030
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     675
     320
     Fixed
     Up
     18.0000
     0.0000
            
                
         Both
         1
         AllDoc
         1
              

       PDDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     4
     3
     4
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     322
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     4
     0
     1
      

   1
  

 HistoryList_V1
 qi2base





